АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теорема Лагранжа о конечных приращениях

Читайте также:
  1. S-M-N-теорема, приклади її використання
  2. Внешние эффекты (экстерналии). Теорема Коуза.
  3. Внешние эффекты трансакционные издержки. Теорема Коуза
  4. Внешние эффекты, их виды и последствия. Теорема Коуза
  5. Внешние эффекты. Теорема Коуза.
  6. Внешние эффекты. Теорема Коуза.
  7. Вопрос 1 теорема сложения вероятностей
  8. Вопрос 24 Теорема Остроградского-Гаусса для электрического поля в вакууме
  9. Вопрос. Теорема Котельникова (Найквиста)
  10. Вопрос: Производная сложной функции. Производные и дифференциалы высших порядков. Теорема Ролля, Лагранжа, Коши.
  11. Второй закон термодинамики. Энтропия. Закон возрастания энтропии. Теорема Нернста. Энтропия идеального газа.
  12. Второй способ.Метод множителей Лагранжа

Если – дифференцируемая функция на некотором промежутке и - любые значения из этого промежутка, то где (1)

Доказательство. На графике функции проведем секущую АВ через точки и Будем перемещать эту секущую параллельно начальному положению до тех пор, пока она не превратится в касательную к графику нашей функции в некоторой точке его где Согласно нашему построению угловой коэффициент секущей равен угловому коэффициенту касательной поэтому откуда получается (1).

Следствие 1. Если производная функции равна нулю на некотором промежутке, то функция есть тождественная постоянная на этом промежутке.

Пусть при Полагая в (1) , где – некоторое фиксированное значение из и где – любое значение из этого интервала, будем иметь

. Отсюда если

Следствие 2. Если две функции имеют равные производные на некотором промежутке, то эти функции на рассматриваемом промежутке отличаются друг от друга самое большее на постоянное слагаемое.

Пусть при Тогда на этом промежутке имеем Следовательно, в силу следствия 1 функция для всех


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.013 сек.)