|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Производные от неявных функцийНачнем с неявной функции одного переменного. Мы уже решали задачу о дифференцировании неявной функции одного переменного, но были рассмотрены лишь отдельные примеры. Сейчас же мы получим общую формулу, дающую производную от неявной функции одного переменного, и выясним условия существования этой производной. Теорема. Пусть непрерывная неявная функция где
Доказательство. Пусть некоторому значению Следовательно, Левую часть последнего равенства, являющуюся полным приращением функции двух переменных, можно переписать так:
где Так как левая часть равна нулю, можно написать:
Разделим на
Устремим
Пример. Уравнение Следовательно, Рассмотрим теперь уравнение вида:
Если паре чисел Найдем частные производные Следовательно, Предполагается, что Аналогичным образом определяются неявные функции любого числа переменных и находятся их частные производные. Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.108 сек.) |