АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ТМО вивчення нерівностей, що містять змінну

Читайте также:
  1. II. Вивчення нового матеріалу.
  2. II. Вивчення нового матеріалу.
  3. II. Вивчення нового матеріалу.
  4. II. Вивчення нового матеріалу.
  5. II. Вивчення нового матеріалу.
  6. II. Вивчення нового матеріалу.
  7. II. Вивчення нового матеріалу.
  8. II. Вивчення нового матеріалу.
  9. II. Вивчення нового матеріалу.
  10. II. Вивчення нового матеріалу.
  11. А) поглиблене вивчення курсу.
  12. Акти офіційного тлумачення (інтерпретаційні акти) – це правові акти, прийняті компетентними державними органами, що містять роз’яснення норм права або порядку їх застосування.

4. Які ж завдання повинен виконати вчитель відносно формування уявлень молодших школярів про нерівності, що містять змінну? – 1) сприяти формуванню поняття про змінну; 2) познайомити дітей із розв’язуванням нерівностей методом підбору. У курсі математики початкової школи дітей знайомлять з найпростішими нерівностями, що містять змінну, наприклад: х+7<26, у●23>89 тощо. Але слід пам’ятати, що у початкових класах не ставиться завдання знайти множину розв’язків нерівності. Саме тому в 1–4-х класах майже не застосовується термін “розв’язати нерівність”. Всі нерівності, які є у підручниках, розглядаються і розв’язуються за допомогою методу підбору.

Відповідно до ТМО навчання математики формування уявлень дітей про нерівності, що містять змінну, включає в себе три етапи. На підготовчому етапі діти знайомляться із числовими нерівностями, їх символікою і термінологією та розв’язують вправи виду 5>‘, 5+3>‘. Останній вид вправ є фактично нерівністю, що містить змінну, яка позначена віконцем. Відносно таких вправ ставиться завдання знайти числа, при підстановці яких у віконце ми одержимо правильну нерівність. При розв’язуванні таких вправ треба звертати увагу на наступне: вимагати від дітей, щоб вони підставляли у віконце різні числа. Крім того, підводити дітей до узагальнень. Наприклад: для вправи 5+3<’ проводимо таку бесіду: що записано у лівій частині нерівності? – сума. Якою повинна бути ця сума порівняно з числами? – меншою. Що слід записати у віконце? – число, яке більше за суму чисел 5 і 3. А чому дорівнює ця сума? - 8. Які числа треба підставити у віконце? - більші, ніж 8.

Коли ж розпочинається систематична робота з формування уявлень дітей про нерівності, що містять змінну? - на другому етапові, коли учні ознайомлюються із нерівностями, що містять змінну. Саме тут замість віконця починає використовуватися змінна, наприклад: 5+х<7. Відшукання значень змінної можна проводити двома шляхами. Покажемо це на наступному прикладі: 12·к<96. Першим способом є метод підбору, користуючись яким дітей треба привчати міркувати так: нехай к=1, тоді 12·1=12<96. Число 1 підходить. При другому способові розв’язування нерівності зводиться до розв’язування рівняння. Замінимо нерівність 12·к<96 рівнянням 12·к=96. Розв’язавши це рівняння, отримаємо, що к=8. Яким повинен бути добуток 12 і к? - меншим за 96. Що треба зробити з співмножником, щоб зменшити добуток? – зменшити. Які ж числа слід підставляти замість к? – менші за 8.

Працюючи над формуванням уміння розв'язувати нерівності та поняття змінної, важливо так організувати спостереження учнів, щоб вони змогли узагальнити з допомогою буквеної символіки часткові факти, зв’язки і залежності, які багато разів спостерігалися. Вивчення досвіду роботи вчителів, аналіз методичної літератури, проведені експерименти свідчать, що з метою особистісної орієнтації навчального процесу слід використовувати обидва способи знаходження розв’язків нерівності. Крім того, особистісній орієнтації навчального процесу значною мірою допомагає використання алгоритмів чи алгоритмічних приписів. Алгоритм розв'язування нерівностей може мати вигляд, який для прикладу а+18>24 представлений у таблиці № 12.8.

У міру вивчення правил знаходження невідомих компонентів арифметичних дій та з метою особистісної орієнтації навчального процесу використовується опорна схема (див. малюнок № 12.1..), з допомогою якої можна виконувати наступні завдання: 1) за якими правилами можна знайти х у кожному окремому випадку? 2) знайти х за даними числами на схемі тощо.

 

Таблиця № 12.7.

 

Алгоритм перетворення виразів Алгоритм для обчислення значення виразів Узагальнений алгоритм для обчислення значення виразів
1. З’ясуй, яка дія виконуватиметься останньою. 2. Згадай, як називаються компоненти цієї дії. 3. Прочитай, чим виражені ці компоненти. 4. Прочитай весь вираз. 1. Якщо у виразі без дужок є тільки дії додавання чи віднімання (множення чи ділення), то виконай дії у тому порядку, в якому вони записані. Якщо ні, то переходь до наступного кроку. 2. Якщо у виразі без дужок вказані дії додавання, віднімання, множення та ділення, то виконай спочатку дії множення та ділення в тому порядку, в якому вони записані. 3. Якщо у виразі є дужки, то спочатку виконай дії в дужках. 4. Назви значення виразу. 1. Прочитай вираз. 2. Встанови порядок виконання дій. 3. Виконай обчислення. 4. Назви значення виразу.
Алгоритм порівняння чисел Алгоритми порівняння виразів на основі обчислення значень порівнюваних виразів Алгоритми порівняння виразів на основі обчислення значень порівнюваних виразів
1. Назви числа, які слід порівняти. 2. Назви число, яке при лічбі зустрічається раніше. 3. Назви число, яке при лічбі зустрічається пізніше. 4. Якщо одне число при лічбі зустрічається раніше, ніж інше, то воно менше його. 5. Постав потрібний знак. Розгорнутий алгоритм у вигляді дій за зразком. 1. 6+4*6+3. 2. 6+4=10. 3. 6+3=9. 4. 10>9. 5. 6+4>6+3. Частково згорнутий алгоритм. 1. Прочитай вирази, які слід порівняти. 2. Обчисли значення кожного виразу. 3. Порівняй значення виразів. 4. Постав потрібний знак.

Таблиця № 12.8.

 

Алгоритм розв'язування нерівності а+18<24
1. Прочитай нерівність. 2. Підстав замість а числа, починаючи з одиниці: 1, 2, 3 тощо. 3. Обчисли значення одержаних виразів. 4. Порівняй їх із заданим числом. 5. Запиши ті значення букви а, при яких нерівність правильна. Якщо а=1, то 1+18=19, а 19<24 і число 1 не підходить. Якщо а=7, то 7+18=25, а 25>24 і число 7 підходить.

 

Яка ж система вправ використовується для формування уявлень молодших школярів про нерівність зі змінною та змінну? - можна використовувати наступні вправи: 1) використовуючи таблиці, склади приклади за зразком 4+ÿ>7; 2) підстав із таблиці числові значення у віконця, встановивши, при яких значеннях вони будуть правильними, а при яких неправильними ÿ+4<10, ÿ+ÿ>10; 3) підбери числові значення у віконця в записах ÿ+ÿ<7, ÿ-ÿ>3, ÿ+ÿ<9 та запиши їх у таблиці. Якщо учням важко зразу ж перейти від використання віконець до використання букви, то можна запропонувати їм спочатку замінити віконця іншими геометричними фігурами і лише потім ввести букви.

 
 
ÿ = ÿ - Х ÿ = Х - ÿ ÿ = ÿ + Х ÿ = Х + ÿ

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)