Умственная логика. Пожалуй, наиболее известная на сегодняшний день реализация идеи ум- ственной логики содержится в формализованной модели Лэнса Рипса [Rips
Пожалуй, наиболее известная на сегодняшний день реализация идеи ум- ственной логики содержится в формализованной модели Лэнса Рипса [Rips, 1991]. В соответствии с моделью Рипса все события, связанные с решением логических задач, разворачиваются во временном хранилище информации, или рабочей памяти. Информация попадает туда либо из структур, отвеча- ющих за восприятие, либо из долговременной памяти и имеет вид пропо- зиций. Рабочая память включает два типа пропозиций — утверждения (assertions) и цели (goals). Утверждения представляют собой пропозиции, которые мы в данный момент принимаем, пусть даже это будет временно, чтобы проверить, к каким выводам они ведут. Цели же являются пропози- циями, истинность которых мы желаем проверить на основе принимаемых нами утверждений. Например, в рабочей памяти могут находиться следую- щие утверждения: «Если я получу двойку на экзамене, то я брошу занятия психологией»; «На экзамене я получил четверку». Цель может заключаться в ответе на вопрос: «Брошу ли я заниматься психологией?»
Как только пропозиции попали в рабочую память, они начинают под- чиняться оперативным принципам, которые имеют право устранять из ра- бочей памяти старые пропозиции и добавлять новые. Рипс вводит в свою систему три таких принципа.
Первый принцип заключается в прямом поиске и состоит в применении правила: «Когда рабочая память содержит утверждение вида: если р, то q, и утверждение р, то утверждение ^ добавляется в рабочую память». Так, при наличии в рабочей памяти утверждений «Если Джон получит двойку на эк- замене, то бросит занятия психологией» и «Джон получил двойку» система выводит новое утверждение «Джон бросит занятия психологией».
Второй принцип состоит в применении правила: «Когда рабочая память содержит цель q? и утверждение типа: если р, то q, то подцель р? должна быть добавлена в рабочую память». Например, при наличии утверждения «Если Джон получит двойку на экзамене, то бросит занятия психологией» и цели «Бросит ли Джон занятия психологией?» система добавляет подцель «Получил ли Джон двойку на экзамене?»
Наконец, третий принцип заключается в применении правила «Когда ра- бочая память содержит цель/) и q?, подцели p?w ^?добаачяются в рабочую па- мять». Например, при наличии цели «Является ли Вундт основателем первой в мире лаборатории по экспериментальной психологии и автором интроспектив- ного метода?» система добавляет в рабочую память две подцели: «Является ли
Умственная логика
Вундт основателем первой в мире лаборатории по экспериментальной психо- логии?»; «Является ли Вундт автором интроспективного метода?».
Сравнив вводимые Рипсом принципы с тем, как задается логическая система (см. Приложение к этой главе), легко видеть, что модель Рипса фактически постулирует тождество операций, производимых когнитивной системой, и логических действий. Так, основная функция в рассуждении отводится modus ponens.
Приведенные выше принципы позволяют системе выполнять действия булевой алгебры, однако они недостаточны для реализации исчисления предикатов. Другими словами, они позволяют действовать на уровне це- лых пропозиций, но не на уровне их частей. Описанная выше система дает возможность правильно ответить на вопрос «Является ли Вундт автором романа "Война и мир"?», однако не действует в случае вопроса «Кто на- писал роман "Война и мир"?».
Для расширения возможностей системы Рипс уточняет понятие пропо- зиции: она состоит из предиката и аргументов. Например, пропозицию «Толстой является автором романа "Война и мир"» можно представить сле- дующим образом: Автор (Толстой, «Война и мир»). Тогда система сможет задать вопрос «Кто написал роман "Война и мир"?» следующим образом: {какойх) Автор (х, «Война и мир»)?
Наложив три изложенных выше принципа логического вывода на предика- тивное описание пропозиции, Рипс получает компьютерную модель, способ- ную выполнять действия как булевой алгебры, так и исчисления предикатов.
Итак, механизм мышления с позиции сторонников умственной логики может быть представлен примерно следующим образом. Вначале задача сводится к набору пропозиций, затем к получившейся репрезентации при- меняются операции, соответствующие логическим правилам.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | Поиск по сайту:
|