юБРНюБРНЛЮРХГЮЖХЪюПУХРЕЙРСПЮюЯРПНМНЛХЪюСДХРаХНКНЦХЪаСУЦЮКРЕПХЪбНЕММНЕ ДЕКНцЕМЕРХЙЮцЕНЦПЮТХЪцЕНКНЦХЪцНЯСДЮПЯРБНдНЛдПСЦНЕфСПМЮКХЯРХЙЮ Х ялххГНАПЕРЮРЕКЭЯРБНхМНЯРПЮММШЕ ЪГШЙХхМТНПЛЮРХЙЮхЯЙСЯЯРБНхЯРНПХЪйНЛОЭЧРЕПШйСКХМЮПХЪйСКЭРСПЮкЕЙЯХЙНКНЦХЪкХРЕПЮРСПЮкНЦХЙЮлЮПЙЕРХМЦлЮРЕЛЮРХЙЮлЮЬХМНЯРПНЕМХЕлЕДХЖХМЮлЕМЕДФЛЕМРлЕРЮККШ Х яБЮПЙЮлЕУЮМХЙЮлСГШЙЮмЮЯЕКЕМХЕнАПЮГНБЮМХЕнУПЮМЮ АЕГНОЮЯМНЯРХ ФХГМХнУПЮМЮ рПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоПХАНПНЯРПНЕМХЕоПНЦПЮЛЛХПНБЮМХЕоПНХГБНДЯРБНоПНЛШЬКЕММНЯРЭоЯХУНКНЦХЪпЮДХНпЕЦХКХЪяБЪГЭяНЖХНКНЦХЪяОНПРяРЮМДЮПРХГЮЖХЪяРПНХРЕКЭЯРБНрЕУМНКНЦХХрНПЦНБКЪрСПХГЛтХГХЙЮтХГХНКНЦХЪтХКНЯНТХЪтХМЮМЯШуХЛХЪуНГЪИЯРБНжЕММННАПЮГНБЮМХЕвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛЕРПХЙЮщЙНМНЛХЙЮщКЕЙРПНМХЙЮчПХЯОСМДЕМЙЖХЪ

натрий-кальциевый обменник в палочках сетчатки

вХРЮИРЕ РЮЙФЕ:
  1. эфферентные сигналы сетчатки

Для клеток с низкими значениями потенциала покоя NCX не представляется надежной системой вывода кальция из цитоплазмы. В таких клетках кальций сначала будет накапливаться до некоторого, достаточно высокого, уровня. Примером такой клетки может служить палочка сетчатки млекопитающих, мембранный потенциал покоя которой обычно находится на уровне -40 мВ (глава 19). В мембране таких клеток встречается другой тип натрий-кальциевого обменника, RetX 28) - 30). По сравнению с NCX дополнительная энергия для переноса кальция получается за счет двух отличий в стехиометрии RetX. Во-первых, вместо трех ионов натрия через RetX проходят четыре. Во-вторых, в работе обменника участвует ион калия, также перемещающийся в направлении своего электрохимического градиента и, следовательно, выделяющий при этом дополнительную энергию. Уравнение потенциала реверсии натрий--калий-кальциевого обменника имеет следующий вид:

Исходя из подсчитанных выше значений Е Na и ECa и принимая значение Е Kза —90 мВ, получим из уравнения Нернста Vr. = +74 мВ. Очевидно, что вероятность реверсии ионообмена через RetX весьма мала.

Для лучшего понимания работы RetX представляется целесообразным задать следующий вопрос: какое значение должен принять равновесный потенциал Е Caдля того, чтобы V rсравнялся с потенциалом покоя клетки, т. е. -40 мВ. С помощью того же уравнения получим 181 мВ, что при внеклеточной концентрации кальция 2ммоль дает значение внутриклеточной концентрации 1 нМ. Другими словами, при мембранном потенциале -40 мВ обменник RetX обладает достаточной энергией для того, чтобы снизить уровень кальция внутри клетки до 1 нМ. Интересно отметить, что при тех же условиях NCX способен понизить внутриклеточную концентрацию кальция только до 383 нМ.

§ 4. Хлорный транспорт

Концентрация хлора внутри клетки поддерживается в строго определенных границах. В нейронах постоянство уровня хлора особенно важно, поскольку от этого фактора зависит синаптическая депрессия (ингибирование) (глава 9). Хлор-чувствительные АТФазы были описаны в клетках мозга, выращенных в культуре 31), что указывает на возможность существования первичных механизмов транспорта хлора. Тем не менее, большая часть хлора переносится через мембрану посредством трех механизмов вторичного транспорта. Это — хлор-бикарбонатный обменник, выводящий ионы хлора из клетки через плазматическую мембрану; ко-транспорт калия


Глава 4. Транспорт через мембрану клетки                                           79

Рис. 4.5. Механизмы хлорного транспорта. (А) Хлор бикарбонатныи обменных, совместно с натрий-водородным обменником, определяет уровень рМ внутри клетки. (В) Калий-хлорный ко-транспорт осуществляет вывод ионов хлора из клетки за счет энергии выходящего тока калия в направлении его электрохимического градиента. (С) В некоторых нейронах транспорт хлора внутрь клетки производится сразу двумя независимыми механизмами, использующими натриевый электрохимический градиент. Первый — натрий-хлорный ко-транспортер, второй — натрий-калий-хлорный ко-транспортер, обладающий стехиометрией 1:1:2. Заметим, что все системы транспорта хлора электрически нейтральны. Fig. 4.5. Mechanisms of Chloride Transport. (A) Chloride- bicarbonate exchange operates in parallel with sodium--hydrogen exchange to regulate intracellular pH. (B) Potassium-chloride cotransport uses the outward electrochemical gradient for potassium to transport chloride out of the cell. (C) In some neurons, inward chloride transport is mediated by two independent mechanisms, both using the electrochemical gradient for sodium. One is sodium--chloride cotransport the other sodium-potassium-chloride cotransport with a stoichiometry of 1: 1: 2. Note that all the chloride transport systems are electrically neutral.

и хлора наружу клетки; ко-транспорт натрия, калия и хлора. Эти механизмы представлены на рис. 4.5.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 |

оНХЯЙ ОН ЯЮИРС:



бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ. яРСДЮКК.нПЦ (0.004 ЯЕЙ.)