|
|||||||
юБРНюБРНЛЮРХГЮЖХЪюПУХРЕЙРСПЮюЯРПНМНЛХЪюСДХРаХНКНЦХЪаСУЦЮКРЕПХЪбНЕММНЕ ДЕКНцЕМЕРХЙЮцЕНЦПЮТХЪцЕНКНЦХЪцНЯСДЮПЯРБНдНЛдПСЦНЕфСПМЮКХЯРХЙЮ Х ялххГНАПЕРЮРЕКЭЯРБНхМНЯРПЮММШЕ ЪГШЙХхМТНПЛЮРХЙЮхЯЙСЯЯРБНхЯРНПХЪйНЛОЭЧРЕПШйСКХМЮПХЪйСКЭРСПЮкЕЙЯХЙНКНЦХЪкХРЕПЮРСПЮкНЦХЙЮлЮПЙЕРХМЦлЮРЕЛЮРХЙЮлЮЬХМНЯРПНЕМХЕлЕДХЖХМЮлЕМЕДФЛЕМРлЕРЮККШ Х яБЮПЙЮлЕУЮМХЙЮлСГШЙЮмЮЯЕКЕМХЕнАПЮГНБЮМХЕнУПЮМЮ АЕГНОЮЯМНЯРХ ФХГМХнУПЮМЮ рПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоПХАНПНЯРПНЕМХЕоПНЦПЮЛЛХПНБЮМХЕоПНХГБНДЯРБНоПНЛШЬКЕММНЯРЭоЯХУНКНЦХЪпЮДХНпЕЦХКХЪяБЪГЭяНЖХНКНЦХЪяОНПРяРЮМДЮПРХГЮЖХЪяРПНХРЕКЭЯРБНрЕУМНКНЦХХрНПЦНБКЪрСПХГЛтХГХЙЮтХГХНКНЦХЪтХКНЯНТХЪтХМЮМЯШуХЛХЪуНГЪИЯРБНжЕММННАПЮГНБЮМХЕвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛЕРПХЙЮщЙНМНЛХЙЮщКЕЙРПНМХЙЮчПХЯОСМДЕМЙЖХЪ |
глава 17. Трансдукция механических и химических стимуловИнтенсивность и временные параметры стимулов кодируются в виде рецепторных потенциалов, возникающих в чувствительных окончаниях сенсорных клеток. Рецепторные потенциалы могут быть деполяриэационными или гиперполяризационными; они возрастают по амплитуде с увеличением интенсивности раздражителя и достигают состояния насыщения при более высоких уровнях стимула. Во время длительного раздражения рецепторные потенциалы адаптируются, что проявляется в снижении их амплитуды. Адаптация может происходить как быстро, так и медленно. Она обусловлена механическими, электрическими или биохимическими процессами, происходящими в различных типах клеток. Рецепторы, которые адаптируются медленно, кодируют длительность стимула. Быстро адаптирующиеся рецепторы специализируются на выявлении изменений параметров раздражителя. Трансдукция механических стимулов происходит в самых разнообразных сенсорных клетках, расположенных в коже, мышцах, связках и внутренних органах. Чувствительные волосковые клетки внутреннего уха являются примером механизма, за счет которого деформация преобразуется в электрические сигналы. Так, движение головы или звук, достигающий уха, отклоняет пучки волосков и вызывает открывание неселективных катионных каналов, что приводит к деполяризации. Во время продолжительного отклонения волосков каналы вновь закрываются в результате процессов адаптации, зависящих от кальция. Обонятельные рецепторы состоят из реснитчатых рецепторных клеток, расположенных в носовой полости; их механизм трансдукции существенно отличается от механизма механотрансдукции. Обонятельные раздражители воздействуют на рецепторы, относящиеся к большому семейству рецепторов, сопряженных с G-белками. Возникающее в результате этого повышение концентрации циклического аденоэин-монофосфата (цАМФ) приводит к открыванию катионных каналов, а вызванная этим деполяризация, в свою очередь, генерирует потенциалы действия. Сходным образом, во вкусовых бугорках определенные вкусовые раздражители (аминокислоты, сахара и соединения с горьким вкусом) преобразуются мембранными рецепторами, связанными с G-белками. Как и в предыдущем случае, увеличение цАМФ вызывает открывание катионных каналов, и возникают потенциалы действия. Соли и кислоты (вещества с кислым вкусом) могут воздействовать непосредственно на ионные каналы в рецепторной клетке вкусового бугорка. Трансдукция в рецепторах, специфичных для восприятия болевых и температурных ощущений, включает как прямое воздействие на катионные каналы в чувствительных нервных окончаниях, так и активацию метаботропных рецепторов. В дополнение к этому, клетки в поврежденных тканях высвобождают вещества, сенситизирующие нервные волокна, проводящие болевую импульсацию. Мы познаем физический мир благодаря нашим органам чувств. Мы протягиваем руку, чтобы коснуться ближайших объектов, либо воспринимаем сигналы, передаваемые на расстоянии. Сенсорные рецепторы — это ворота, через которые проходят эти сигналы. Уже в исходной точке рецепторы задают основу того сенсорного анализа, который впоследствии осуществляется центральной нервной системой. Они определяют пределы чувствительности и устанавливают диапазон сигналов, которые могут быть выявлены и на которые последует реакция. За редким исключением, каждый тип рецептора специализирован, чтобы избирательно реагировать лишь на энергию одного типа раздражителя, называемого адекватным стимулом. Палочки и колбочки сетчатки глаза реагируют на свет (глава 19), нервные окончания кожи — на прикосновение, давление или вибрацию, рецепторы языка — на химические вкусовые раздражители. 362 Раздел III. Интегративные механизмы Стимул, какой бы модальности он ни был, всегда конвертируется (или трансдуцируется) в электрический сигнал, в рецепторный потенциал. В общем, сила и длительность любого раздражителя кодируются электрическими сигналами; распознавание центральной нервной системой модальности раздражителя и его местонахождения зависит от природы сенсорного окончания и его анатомического расположения. Таким образом, температурный рецептор, расположенный в ступне ноги, имеет свой собственный проводящий путь в нервную систему, совершенно иной, чем путь от вибрационного рецептора кисти руки, но в обоих аксонах сигналами являются пачки потенциалов действия различной частоты и длительности. Для сенсорных сигналов характерна большая степень усиления на рецепторном уровне, так что даже очень небольшой внешний раздражитель способен запустить высвобождение накопленных на мембране зарядов, которые преобразуются в электрические потенциалы. Например, запахи, издаваемые всего лишь несколькими молекулами специфических пахучих веществ (феромонов) способны воздействовать на мотыльков как сексуальный аттрактант. Сходным образом, всего нескольких квантов света, уловленных рецепторами сетчатки, достаточно, чтобы вызвать зрительное ощущение. Такой же, близкой к пределу возможного, чувствительностью обладает и внутреннее ухо, способное различить механические смещения величиной всего 10–10 м1). Столь же замечательными свойствами обладают электрические рецепторы некоторых рыб, способные улавливать электрические поля в несколько нановольт на сантиметр2· 3). По мощности это меньше, чем поле, которое бы возникло, если два провода, подключенных к полюсам обычной батарейки для фотовспышки, погрузить в Атлантический океан, один в районе Бордо, а другой возле Нью-Йорка! Сенсорные рецепторы имеют вполне определенный спектр стимулов, на которые они реагируют. Например, наши слуховые волосковые клетки могут реагировать на звук только в пределах полосы частот примерно от 20 до 20000 Гц. Реакция рецепторов нашей сетчатки на электромагнитное излучение сходным образом ограничена диапазоном длин волн примерно от 400 до 750 нанометров. Более коротковолновое (ультрафиолетовый свет) и более длинноволновое (инфракрасный свет) излучение глазом не воспринимается. Ограничения такого рода обычно не обусловлены неизбежными физическими пределами. Скорее, каждая система настроена на конкретную потребность организма: киты и летучие мыши могут слышать более высокие частоты; змеи могут воспринимать инфракрасное, а пчелы — ультрафиолетовое излучение. У собак и свиней чувство обоняния более утонченное, чем у людей. Какие механизмы обеспечивают столь высокую чувствительность и избирательность рецепторных клеток сенсорных органов? В данной главе мы сосредоточимся на особенностях трансдукции механических и химических сенсорных стимулов. Чтобы описать механотрансдукцию, мы выбрали мышечные рецепторы растяжения и механорецептивные волосковые клетки внутреннего уха. Механизмы хемотрансдукции иллюстрируются обонятельными и вкусовыми рецепторами. Мы завершаем главу обсуждением ноцицепции, которая лежит в основе восприятия боли и сочетает в себе трансдукцию химических и механических стимулов. (Фототрансдукция в палочках и колбочках сетчатки описана отдельно в главе 19.) § 1. Кодирование стимулов механорецепторами оНХЯЙ ОН ЯЮИРС: |
бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ. яРСДЮКК.нПЦ (0.004 ЯЕЙ.) |