|
|||||||
юБРНюБРНЛЮРХГЮЖХЪюПУХРЕЙРСПЮюЯРПНМНЛХЪюСДХРаХНКНЦХЪаСУЦЮКРЕПХЪбНЕММНЕ ДЕКНцЕМЕРХЙЮцЕНЦПЮТХЪцЕНКНЦХЪцНЯСДЮПЯРБНдНЛдПСЦНЕфСПМЮКХЯРХЙЮ Х ялххГНАПЕРЮРЕКЭЯРБНхМНЯРПЮММШЕ ЪГШЙХхМТНПЛЮРХЙЮхЯЙСЯЯРБНхЯРНПХЪйНЛОЭЧРЕПШйСКХМЮПХЪйСКЭРСПЮкЕЙЯХЙНКНЦХЪкХРЕПЮРСПЮкНЦХЙЮлЮПЙЕРХМЦлЮРЕЛЮРХЙЮлЮЬХМНЯРПНЕМХЕлЕДХЖХМЮлЕМЕДФЛЕМРлЕРЮККШ Х яБЮПЙЮлЕУЮМХЙЮлСГШЙЮмЮЯЕКЕМХЕнАПЮГНБЮМХЕнУПЮМЮ АЕГНОЮЯМНЯРХ ФХГМХнУПЮМЮ рПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоПХАНПНЯРПНЕМХЕоПНЦПЮЛЛХПНБЮМХЕоПНХГБНДЯРБНоПНЛШЬКЕММНЯРЭоЯХУНКНЦХЪпЮДХНпЕЦХКХЪяБЪГЭяНЖХНКНЦХЪяОНПРяРЮМДЮПРХГЮЖХЪяРПНХРЕКЭЯРБНрЕУМНКНЦХХрНПЦНБКЪрСПХГЛтХГХЙЮтХГХНКНЦХЪтХКНЯНТХЪтХМЮМЯШуХЛХЪуНГЪИЯРБНжЕММННАПЮГНБЮМХЕвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛЕРПХЙЮщЙНМНЛХЙЮщКЕЙРПНМХЙЮчПХЯОСМДЕМЙЖХЪ |
механизм закачки медиатора в клеткуМедиаторы могут также закачиваться из внеклеточного пространства внутрь нейронов или глиальных клеток (главы 8 и 13). В целом этот процесс выполняет две задачи: 1) устранение медиатора из внеклеточного пространства, окружающего синапс, с целью прекращения его действия на постсинаптическую клетку 42, 43); и 2) закачку медиатора обратно в пресинаптическое окончание для повторного использования в синаптической передаче. Все подобные механизмы используют электрохимический градиент натрия для перемещения медиатора в цитоплазму. На рис. 4.7 показаны два основных типа систем закачки медиатора 44). Механизмы первого типа сопряжены с перемещением ионов натрия внутрь и ионов калия наружу клетки. Такие системы используются для закачки нейтральных и кислых аминокислот, таких как глутамат45). Перемещение одной молекулы глутамата внутрь клетки сопряжено с перемещением двух или трех ионов натрия внутрь и одного иона калия наружу. Кроме того, происходит перемещение либо протона внутрь, либо гидроксильной группы наружу, что приводит к окислению внутриклеточной среды 46, 47). Механизмы второго типа используют вход натрия для введения в клетку молекул медиатора и ионов хлора. Эти системы обеспечивают транспорт ГАМК, норэпинефрина, дофамина, глицина и серотонина в клетку. За один цикл в клетку входит один или два иона натрия, одна молекула медиатора и один ион хлора48). Интересным свойством таких механизмов закачки медиаторов в клетку является отсутствие электрической нейтральности. Следовательно, вариации мембранного потенциала, даже в физиологическом диапазоне, могут вызвать реверсию направления работы этих систем49). Действительно, в клетках клетчатки сома был показан обратный транспорт ГАМК наружу50). Таким образом, транспортные системы могут осуществлять не только закачку медиатора, но и его высвобождение. Реверсия механизма закачки медиатора может также иметь вредные последствия. Так, в результате травмы головного мозга или инсульта может произойти выброс глутамата из деполяризованных глиальных клеток, приводящий к накоплению токсичных концентраций этого медиатора во внеклеточной среде и дальнейшему повреждению соседних клеток 51). Круговорот еще одного медиатора, ацетилхолина (ACh), происходит по несколько иной схеме. ACh синтезируется из холина и ацетил-кофермента А (глава 13). После высвобождения ACh в синаптическую щель его действие на постсинаптическую клетку ограничивается особым ферментом (ацетилхолинэстеразой; глава 9), которая гидролизует ACh на ацетат и холин. Приблизительно половина молекул холина закачивается в нервное окончание с помощью высокоаффинного (Кm = 2 мкмоль) механизма и используется для синтеза ACh. Подобно механизмам закачки моноаминов, ГAMK и глицина, этот механизм также зависит от внеклеточного натрия и хлора52). 82 Раздел II. Передача информации в нервной системе § 6. Молекулярная структура переносчиков До сих пор речь шла лишь о функциональных характеристиках переносчиков, без упоминания их молекулярного строения. Как и в случае ионных каналов (глава 2), каждая функциональная группа связана с определенной белковой молекулой или, в более общем виде, с семейством молекул. Многие из них удалось изолировать и клонировать, а также сделать предположение о конфигурации этих молекул в мембране. Ниже приведены обшие сведения о структуре молекул переносчиков, показанной на рис. 4.8. Большинство из них имеет от 10 до 12 трансмембранных сегментов и, как полагают, образует канало-подобные структуры. Перенос веществ через мембрану осуществляется путем попеременного выдвижения посадочных мест во внутриклеточную и внеклеточную среды. аТФазы Молекулярное строение натрий-калиевой АТФазы изучено достаточно детально 53, 54). Она состоит из двух субъединиц, aи b. a-субъединица, молекулярная масса которой составляет приблизительно 100 кД, отвечает за ферментативную активность насоса и содержит все места связывания субстрата. Меньшая по размеру (35 кД) b -субъединица содержит несколько внеклеточных мест гликозилирования и также необходима для функционирования насоса, однако в чем именно состоит ее роль, неизвестно. Обе субъединицы были успешно клонированы 55, 56). Предполагаемая структура показана на рис. 4.8А. Места связывания нуклеотидов и фосфорилирования расположены в большом цитоплазматическом участке a-субъединицы, между четвертым и пятым трансмембранными сегментами. Большая часть b -субъединицы расположена во внеклеточном пространстве, и лишь один сегмент предположительно пронизывает мембрану. Известны три изоформы a-субъединицы (a, a2 и a3), все они экспрессируются в нервной системе. Две из трех известных изоформ b -субъединицы (b и β 2 ) найдены в нервных тканях. Семейство кальциевых АТФаз эндо- и саркоплазматического ретикулумов (SERCA) проистекает, как минимум, из трех генов с альтернативным сплайсингом15·57). Семейство кальциевых насосов плазматической мембраны (РМСА) является продуктом экспрессии четырех различных генов, каждый из которых имеет, как минимум, два варианта сплайсинга. Все эти белковые молекулы представляют собой одиночную полипептидную цепочку с молекулярной массой порядка 100 кД, структура которой напоминает a-субъединицу натрий-калиевой АТФазы с увеличенным цитоплазматическим сегментом со стороны карбоксильного окончания. В отличие от натрий-калиевой АТФазы, эти АТФазы не нуждаются в b -субъединице для осуществления своей ферментативной активности. оНХЯЙ ОН ЯЮИРС: |
бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ. яРСДЮКК.нПЦ (0.004 ЯЕЙ.) |