юБРНюБРНЛЮРХГЮЖХЪюПУХРЕЙРСПЮюЯРПНМНЛХЪюСДХРаХНКНЦХЪаСУЦЮКРЕПХЪбНЕММНЕ ДЕКНцЕМЕРХЙЮцЕНЦПЮТХЪцЕНКНЦХЪцНЯСДЮПЯРБНдНЛдПСЦНЕфСПМЮКХЯРХЙЮ Х ялххГНАПЕРЮРЕКЭЯРБНхМНЯРПЮММШЕ ЪГШЙХхМТНПЛЮРХЙЮхЯЙСЯЯРБНхЯРНПХЪйНЛОЭЧРЕПШйСКХМЮПХЪйСКЭРСПЮкЕЙЯХЙНКНЦХЪкХРЕПЮРСПЮкНЦХЙЮлЮПЙЕРХМЦлЮРЕЛЮРХЙЮлЮЬХМНЯРПНЕМХЕлЕДХЖХМЮлЕМЕДФЛЕМРлЕРЮККШ Х яБЮПЙЮлЕУЮМХЙЮлСГШЙЮмЮЯЕКЕМХЕнАПЮГНБЮМХЕнУПЮМЮ АЕГНОЮЯМНЯРХ ФХГМХнУПЮМЮ рПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоПХАНПНЯРПНЕМХЕоПНЦПЮЛЛХПНБЮМХЕоПНХГБНДЯРБНоПНЛШЬКЕММНЯРЭоЯХУНКНЦХЪпЮДХНпЕЦХКХЪяБЪГЭяНЖХНКНЦХЪяОНПРяРЮМДЮПРХГЮЖХЪяРПНХРЕКЭЯРБНрЕУМНКНЦХХрНПЦНБКЪрСПХГЛтХГХЙЮтХГХНКНЦХЪтХКНЯНТХЪтХМЮМЯШуХЛХЪуНГЪИЯРБНжЕММННАПЮГНБЮМХЕвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛЕРПХЙЮщЙНМНЛХЙЮщКЕЙРПНМХЙЮчПХЯОСМДЕМЙЖХЪ

гАМК и глицин: тормозные медиаторы в ЦНС

вХРЮИРЕ РЮЙФЕ:
  1. аТФ и аденозин как медиаторы ЦНС
  2. глава 14. Нейромедиаторы в центральной нервной системе
  3. медиаторы в сетчатке

ГАМК высвобождается в тормозных синапсах различных областей ЦНС. В серии изящных экспериментов Отсука, Ито, Обата и их коллеги установили, что клетки Пуркинье мозжечка выделяют ГАМК в качестве тормозного медиатора в синапсах, которые они образуют на клетках ствола мозга19)--21). В зрительной системе также получены морфологические и физиологические доказательства высвобождения ГАМК как медиатора (главы 19 и 20). Так, в сетчатке ГАМК обнаружена в определенных типах горизонтальных и амакриновых клеток22)--25). В ядрах латерального коленчатого тела некоторые клетки содержат фермент декарбоксилазу глутаминовой кислоты, синтезирующий ГАМК, а в зрительной коре определенные типы локальных тормозных нейронов содержат декарбоксилазу глутаминовой кислоты и имеют систему захвата ГАМК26).

Местная аппликация агентов, блокирующих действие ГАМК, оказывает влияние на нейрональную сигнализацию в зрительной системе. Так, бикукуллин и пикротоксин изменяют организацию рецептивных полей ганглионарных клеток сетчатки и комплексных клеток коры (главы 19 и 20)27· 28). Бесспорно установлено наличие большой доли ГАМК--содержащих нейронов в центральной нервной системе. Например, в ряде областей коры больших полушарий каждый пятый нейрон высвобождает ГАМК в качестве медиатора29). Важность тормозных взаимодействий, опосредуемых ГАМК, для нейронной сигнализации в ЦНС в целом может быть проиллюстрирована тем фактом, что применение веществ, которые блокируют рецепторы ГАМК, таких как пикротоксин и пенициллин, приводит к возникновению судорог30).

Вторым, медиатором, осуществляющим торможение в синапсах ЦНС, особенно в тех, которые расположены в стволе головного мозга и спинном мозге, является глицин. В спинном мозге кошки и речной миноги глицин играет роль основного тормозного медиатора31· 32). Увеличение проводимости мембран нейронов для хлора вследствие стимуляции тормозных путей точно воспроизводится внеклеточной аппликацией глицина из пипетки. Оба тормозных медиатора — и ГАМК, и глицин — открывают хлорные каналы на мембране. Для того чтобы разделить влияние этих медиаторов на проводимость и кинетику открытых каналов, необходимо осуществить запись активности одиночных ионных каналов, активируемых этими медиаторами, или провести анализ шумов. Таким образом можно продемонстрировать, что характеристики каналов, открываемых эндогенными медиаторами в процессе синаптической активности, соответствуют характеристикам каналов, которые активируются во время аппликации экзогенного ГАМК или глицина. Простым и часто используемым методом, позволяющим разделить эффекты этих двух медиаторов, является применение веществ, блокирующих торможение, таких как стрихнин для глициновых рецепторов и пикротоксин и бикукулин для ГАМК рецепторов33).

Ионотропный глициновый рецептор является членом суперсемейства лиганд-зависимых ионных каналов, которое включает никотиновые АХ рецепторы, рецепторы ГАМК и 5-НТ34) (глава 3). Мутация a -субъединицы глицинового рецептора у мышей и человека приводит к возникновению нарушения двигательной функции и поведения35· 36), что подчеркивает важное значение глииинергической синаптической сигнализации.

рецепторы ГАМК

В ЦНС обнаружены три класса рецепторов ГАМК. Два из них, ГАМКA и ГАМКС, являются ионотропными, а ГАМКВ рецепторы — метаботропными. Идентифицированы четыре типа субъединиц ГАМКД рецепторов (глава 3): a, b, g и d 37· 38)). Субъединицы a и b, каждая по отдельности или в комбинации,


296                                     Раздел П. Передача информации в нервной системе

Рис. 14.3. Распределение мРНК субъединиц ГАМКА рецептора в мозге крысы. Представлены авторадиограммы серийных срезов мозга крысы, полученные с помощью in situ гибридизации с мечеными 35S антисенс олигонуклеотидными зондами к a 1(А), a 3 (В) и a 6 (С) субъединицы ГАМКA рецептора, cb = мозжечок; cl = claustrum; ctx = кора больших полушарий; dg = зубчатая фасция; др = бледный шар; gr = гранулярные клетки мозжечка; Т = таламус. Fig. 14.3. The Distribution of GABAA Receptor Subunit mRNAS in the rat brain. Light-microscopic autoradiographs of serial sections of rat brain following in situ hybridization with 35S-labeled antisense oligonucleotide probes for the a , (A), a 3(B), and a 6 (C) GABAA receptor subunits. cb = cerebellum, cl = claustrum, ctx = cortex, dg = dentate gyrus, gp = globus pallidus, gr = cerebellar granule cells, Т = thalamus. (After Luddens and Wisden, 1991; autoradiographs kindly provided by W. Wisden.)

могут образовывать каналы в экспериментальных условиях. Каждый тип субъединиц объединяет множество различающихся между собой изоформ, поэтому разные комбинации субъединиц образуют рецепторы с разными свойствами. Распределение мРНК, кодирующей разные изоформы субьединиц рецепторов ГАМ К, различается в разных отделах мозга, что предполагает наличие специфичности распределения подтипов рецепторов ГАМК в мозге29). Как видно на рис. 14.3, высокий уровень экспрессии подтипов субъединиц a и a6, но не a 3, наблюдается в мозжечке. Определенная комбинация субъединиц ГАМК рецептора, включающая a , b 2, g 2-субъединицы, более широко распространена в нервной системе, чем другие варианты39). Установлено, что различный субъединичный состав рецепторов ГАМК вносит определенный вклад в фармакологическую гетерогенность нативных рецепторов40).

В начале 1980-х годов в нейронах ЦНС были обнаружены медленные ответы на аппликацию ГАМК, нечувствительные к действию бикукуллина41). Такие медленные ответы вызывал баклофен, который не оказывает влияния на ГАМКД рецепторы. Этот эффект связан с активацией метаботропных ГАМКВ рецепторов. Позднее был клонирован ген ГАМКB, рецепторов42· 43). Он кодирует G--белок-сопряженный рецептор, имеющий семь трансмембранных доменов и сходный с метаботропным глутаматным рецептором (глава 10). Постсинаптические ГАМКВ рецепторы активируют калиевые каналы внутреннего выпрямления (GIRK или Kir3.0)44)--45), тогда как пресинаптические ГАМКВ рецепторы подавляют активность потенциалзависимых кальциевых каналов47).

В биполярных клетках сетчатки наблюдаются быстрые ГАМК-зависимые изменения тока хлора, подобные тем, что имеют место при активации ГАМКА рецепторов, но не чувствительные к бикукуллину (или баклофену). Рецепторы, осуществляющие этот процесс, были названы ГАМКС рецепторами48). Эти рецепторы фармакологически, генетически и функционально отличаются от ГАМКА рецепторов49). ГАМКС рецепторы особо чувствительны к аналогу ГАМК — цис- 4-аминокротоновой кислоте. Два родственных гена (rhorho 2 ) кодируют ГАМКс-подобный рецептор, экспрессирующийся в ооцитах Xenopus 50), и субъединица rho2 была обнаружена в мозге повсеместно. Объединяясь вместе, субъединицы ГАМКА и ГАМКС рецепторов могут образовывать совершенно иной, функционально отличный класс рецепторов51).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 |

оНХЯЙ ОН ЯЮИРС:



бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ. яРСДЮКК.нПЦ (0.004 ЯЕЙ.)