юБРНюБРНЛЮРХГЮЖХЪюПУХРЕЙРСПЮюЯРПНМНЛХЪюСДХРаХНКНЦХЪаСУЦЮКРЕПХЪбНЕММНЕ ДЕКНцЕМЕРХЙЮцЕНЦПЮТХЪцЕНКНЦХЪцНЯСДЮПЯРБНдНЛдПСЦНЕфСПМЮКХЯРХЙЮ Х ялххГНАПЕРЮРЕКЭЯРБНхМНЯРПЮММШЕ ЪГШЙХхМТНПЛЮРХЙЮхЯЙСЯЯРБНхЯРНПХЪйНЛОЭЧРЕПШйСКХМЮПХЪйСКЭРСПЮкЕЙЯХЙНКНЦХЪкХРЕПЮРСПЮкНЦХЙЮлЮПЙЕРХМЦлЮРЕЛЮРХЙЮлЮЬХМНЯРПНЕМХЕлЕДХЖХМЮлЕМЕДФЛЕМРлЕРЮККШ Х яБЮПЙЮлЕУЮМХЙЮлСГШЙЮмЮЯЕКЕМХЕнАПЮГНБЮМХЕнУПЮМЮ АЕГНОЮЯМНЯРХ ФХГМХнУПЮМЮ рПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоПХАНПНЯРПНЕМХЕоПНЦПЮЛЛХПНБЮМХЕоПНХГБНДЯРБНоПНЛШЬКЕММНЯРЭоЯХУНКНЦХЪпЮДХНпЕЦХКХЪяБЪГЭяНЖХНКНЦХЪяОНПРяРЮМДЮПРХГЮЖХЪяРПНХРЕКЭЯРБНрЕУМНКНЦХХрНПЦНБКЪрСПХГЛтХГХЙЮтХГХНКНЦХЪтХКНЯНТХЪтХМЮМЯШуХЛХЪуНГЪИЯРБНжЕММННАПЮГНБЮМХЕвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛЕРПХЙЮщЙНМНЛХЙЮщКЕЙРПНМХЙЮчПХЯОСМДЕМЙЖХЪ

глава 21. Функциональная архитектура зрительной коры

вХРЮИРЕ РЮЙФЕ:
  1. ассоциативные зоны зрительной коры
  2. глава 10 Механизмы непрямой синаптической передачи
  3. глава 11 Высвобождение медиатора
  4. глава 12. Синоптическая пластичность
  5. глава 13. Клеточная и молекулярная биохимия синаптической передачи
  6. глава 14. Нейромедиаторы в центральной нервной системе
  7. глава 15. Клеточные механизмы интеграции и поведения у пиявок, муравьев и пчел
  8. глава 16. Вегетативная (автономная) нервная система
  9. глава 17. Трансдукция механических и химических стимулов
  10. глава 18. Обработка соматосенсорных и слуховых сигналов
  11. глава 19. Передача и кодирование сигнала в сетчатке глаза
  12. глава 2. Ионные каналы и нейрональная сигнализация

Зрительная кора организована в виде вертикальных кластеров клеток, имеющих сходные функциональные свойства. Нейроны, получающие информацию избирательно либо от правого, либо от левого глаза, сгруппированы в глазодоминантные колонки. Ориентационные колонки состоят из нейронов, которые имеют сходную чувствительность к углам ориентации линий и краев изображения. Глазодоминантные колонки и ориентационные колонки были впервые открыты при регистрации электрической активности от группы кортикальных клеток во время прохождения электродом вглубь зрительной коры. Глазодоминантные и ориентационные колонки могут быть также визуализованы при помощи биохимических и оптических методов, которые выявляют зоны активности коры у живого животного.

Аксоны крупноклеточных (magnocellular. M) и мелкоклеточных (parvocellular, P) нейронов ядер латерального коленчатого тела проецируются в различные области 4 слоя первичной зрительной коры. В дальнейшем эта информация по М- или Р-трактам распространяется в различающиеся области первичной и вторичной зрительной коры. Нейроны М-пути отвечают за детекцию движущихся стимулов. Они также чувствительны к различиям в контрастности и интенсивности зрительных стимулов. Нейроны Р-пути ответственны за тонкие детали изображения и восприятие цвета.

При восприятии изображения такие его элементы, как цвет и движение, анализируются независимо. Это иллюстрируется тем фактом, что повреждения в изолированных зонах мозга приводят к селективной потере одного из этих свойств, но не сказываются на общем восприятии изображения глазом. Повреждения в области париетальной коры, известной как МТ (или V5), приводят к полной потере способности определять движения объектов и к нарушениям в восприятии интенсивности изображения. При локализации повреждения в затылочно-височной области (зона V4) теряется способность к распознаванию цвета.

Выдающимся достижением является использование неинвазивных методов функционального магнитного резонанса для определения зон активности мозга животных и человека. Хотя отдельные корковые глазодоминантные и ориентационные колонки имеют размеры меньше сегодняшнего предела разрешения данного метода, именно при помощи этого метода были найдены области зрительной коры, специализирующиеся на задачах особого рода, таких как определение движения и распознавание лиц.

В главе 20 мы описали, как путем анализа эффекта зрительных стимулов на последовательно связанные кортикальные клетки можно понять процессы переработки информации в первичной зрительной коре. Этот подход приблизил нас к пониманию клеточных механизмов анализа формы в каждой отдельной точке поля зрения. Сейчас же нашей задачей является изучить, каким образом в коре кодируются другие аспекты восприятия, такие как цвет и движение, и каким образом эти свойства могут быть затем собраны воедино при восприятии цельного изображения.

Мы уже описали поточечное представление сетчатки в области зрительной зоны (V1) и то, каким образом происходит разделение информации от обоих глаз в колонках глазного доминирования. В пределах данной ретинотопической карты существует функциональное деление; так, например, определенные колонки клеток реагируют на линии строго определенной ориентации. Мы начинаем эту главу исследованием взаимосвязи между колонками глазного доминирования и ориентационными колонками, затем мы рассмотрим доказательства того, что в зрительной коре движение и цвет анализируются параллельно различными группами клеток. И, наконец, мы рассмотрим примеры высшего уровня обработки зрительной информации в зонах, расположенных вне первичной зрительной коры.


466                                               Раздел III. Интегративные механизмы

§ 1. Колонки с доминированием одного глаза и ориентационные колонки

В ранних экспериментах Хьюбеля и Визеля было показано, что клетки коры со сходными свойствами образуют между собой связи, формируя вертикально организованные колонки1· 2). В экспериментах с проникающим электродом, при его продвижении вглубь зрительной коры, у всех клеток обнаруживалась одна и та же ориентация оси рецептивного поля, то же глазное доминирование и одно и то же расположение рецептивного поля. Мы уже упоминали колонки предпочтения определенного глаза (eye preference). Как обсуждалось в главе 20, сигналы от обоих глаз разделяются в пределах слоя 4, где кортикальные нейроны получают сигналы только от одного глаза. В любой данной колонке, выходящей выше или ниже слоя 4, все кортикальные нейроны, даже те, которые получают информацию от обоих глаз, имеют одинаковое глазное предпочтение (либо левый, либо правый глаз). Таким образом, существуют колонки с предпочтительной, или по-другому, с доминирующей реакцией на сигналы от одного определенного глаза (глазодоминантные колонки). На рис. 21.1 иллюстрируются различия в таком глазном доминировании в нейронах стриарной коры обезьяны. Клетки (всего 1116) подразделяются на 7 групп. Группы 1 и 7 получают информацию только от одного из глаз и находятся в слое 4 коры. В группах 2, 3, 5 и 6 эффект одного из глаз сильнее, нежели другого, и только в средней группе 4 оба глаза имеют примерно одинаково выраженные эффекты. Из гистограммы также ясно, что большинство клеток отвечают преимущественно на сигналы от правого или левого глаза.

Как было описано в главе 20, глазодоминантные колонки формируют своеобразный перемежающийся рисунок зрительной коры. Паттерны глазного предпочтения в коре могут быть непосредственно визуализованы, используя оптические сигналы от искусственно введенных красителей3)--5). При помощи этого метода можно исследовать активность больших участках коры во время предъявления животному различных зрительных стимулов. На рис. 21.2 показаны глазодоминантные колонки, выявленные в таком эксперименте. Полосатый (перемежающийся) рисунок активности напоминает тот, который может быть получен при введении радиоактивных меток в один глаз (см. рис. 20.8 в главе 20). При предъявлении зрительного стимула только одному глазу выявляются полоски клеток, получающих сигналы только от этого глаза, отделенные друг от друга клетками с невысоким уровнем активности. Проекции этих полосок от поверхно-

Рис. 21.1. Физиологическая демонстрация глазодоминантных колонок. (А) Глазные предпочтения е 1116 клетках в зоне V1 у 28 макак резус. Большинство клеток (группы со второй по шестую) получают информацию от обоих глаз. (В) Диаграмма, показывающая каким образом информация от двух глаз, направляющаяся в слой 4 коры, комбинируется в более поверхностных слоях при помощи горизонтальных и косых соединений, дающих клетки с бинокулярными полями. Fig. 21.1. Physiological Demonstration of Ocular Dominance Columns. (A) Eye preference of 1 116 cells in Va of 28 rhesus monkeys. Most cells (groups 2 through 6) are driven by both eyes. (B) Diagram to show how inputs from two eyes arriving in layer 4 of the cortex are combined in more superficial layers through horizontal or oblique connections to create cells with binocular fields. (After Hubel and Wiesel, 1968; Hubel, 1988.)

 


Глава 21. Функциональная архитектуре зрительной коры 467

Рис. 21.2. Выявление глазодоминантных колонок с помощью оптической регистрации. Чувствительная камера обнаруживает оптический сигнал в коре обезьяны во время стимуляции только одного глаза. Изменения в интенсивности сигнала кодируются при помощи цвета, поэтому активные зоны выглядят в виде светлых полос. Паттерн светлых полос соответствует колонкам глазного доминирования, выявляемым при маркировании анатомическими методами (см. рис. 20.8). Fig. 21.2. Display of Ocular Dominance Columns by Optical Imaging. A sensitive camera detects changes in light reflected from the monkey cortex following activity induced in just one eye. The intensity changes are color-coded so that active areas are light. The pattern of light stripes corresponds to ocular dominance columns revealed by anatomical labeling methods (see Figure 20.8). (After Tso et al., 1990.)
Рис. 21.3. Оси ориентации рецептивных полей нейронов по мере погружения электрода вглубь коры мозга кошки. Все последующие клетки демонстрируют одинаковую ориентацию оси, что показано в виде угла, под которым располагается штриховая полоска по отношению к линии проникновения электрода. Погружение электрода справа идет с большим отклонением от перпендикуляра, следовательно, при пересечении им нескольких колонок часто меняется и ориентация оси. Расположение каждой клетки определяется при помощи нанесения небольших повреждений по мере погружения электрода и при завершении погружения (показано кружком). На основании этих данных производится реконструкция хода электрода. Подобные эксперименты позволили установить, что клетки со сходными свойствами у кошек и обезьян организованы в виде колонок, идущих под определенными углами к поверхности коры. Fig. 21.3. Axis Orientation of Receptive Fields of Neurons encountered as an electrode traverses the cortex of a cat. Cell after cell tends to have the same axis orientation, indicated by the angle of the bar to the electrode track. The penetration to the right is more fjblique; consequently, the track crosses several columns and the axis orientations change frequently. The position of each cell is determined by making lesions repeatedly and at the end of the penetration (circle), and reconstructing the electrode track in serial sections of the brain. Such experiments have established that cat and monkey cells with similar axis orientation are stacked in columns running at right angles to the cortical surface. (After Hubel and Wiesel 1962.)

сти коры вглубь образуют колонки глазного доминирования, делящие ретинотопическую карту на более мелкие области. Таким образом, информация о предмете, находящемся в одном и том же месте зрительного поля, идущая от обоих глаз, интегрируется в пределах зрительной коры как соседними клетками, так и соседними колонками (рис. 21.1В).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 |

оНХЯЙ ОН ЯЮИРС:



бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ. яРСДЮКК.нПЦ (0.006 ЯЕЙ.)