|
|||||||
юБРНюБРНЛЮРХГЮЖХЪюПУХРЕЙРСПЮюЯРПНМНЛХЪюСДХРаХНКНЦХЪаСУЦЮКРЕПХЪбНЕММНЕ ДЕКНцЕМЕРХЙЮцЕНЦПЮТХЪцЕНКНЦХЪцНЯСДЮПЯРБНдНЛдПСЦНЕфСПМЮКХЯРХЙЮ Х ялххГНАПЕРЮРЕКЭЯРБНхМНЯРПЮММШЕ ЪГШЙХхМТНПЛЮРХЙЮхЯЙСЯЯРБНхЯРНПХЪйНЛОЭЧРЕПШйСКХМЮПХЪйСКЭРСПЮкЕЙЯХЙНКНЦХЪкХРЕПЮРСПЮкНЦХЙЮлЮПЙЕРХМЦлЮРЕЛЮРХЙЮлЮЬХМНЯРПНЕМХЕлЕДХЖХМЮлЕМЕДФЛЕМРлЕРЮККШ Х яБЮПЙЮлЕУЮМХЙЮлСГШЙЮмЮЯЕКЕМХЕнАПЮГНБЮМХЕнУПЮМЮ АЕГНОЮЯМНЯРХ ФХГМХнУПЮМЮ рПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоПХАНПНЯРПНЕМХЕоПНЦПЮЛЛХПНБЮМХЕоПНХГБНДЯРБНоПНЛШЬКЕММНЯРЭоЯХУНКНЦХЪпЮДХНпЕЦХКХЪяБЪГЭяНЖХНКНЦХЪяОНПРяРЮМДЮПРХГЮЖХЪяРПНХРЕКЭЯРБНрЕУМНКНЦХХрНПЦНБКЪрСПХГЛтХГХЙЮтХГХНКНЦХЪтХКНЯНТХЪтХМЮМЯШуХЛХЪуНГЪИЯРБНжЕММННАПЮГНБЮМХЕвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛЕРПХЙЮщЙНМНЛХЙЮщКЕЙРПНМХЙЮчПХЯОСМДЕМЙЖХЪ |
глава 21. Функциональная архитектура зрительной корыЗрительная кора организована в виде вертикальных кластеров клеток, имеющих сходные функциональные свойства. Нейроны, получающие информацию избирательно либо от правого, либо от левого глаза, сгруппированы в глазодоминантные колонки. Ориентационные колонки состоят из нейронов, которые имеют сходную чувствительность к углам ориентации линий и краев изображения. Глазодоминантные колонки и ориентационные колонки были впервые открыты при регистрации электрической активности от группы кортикальных клеток во время прохождения электродом вглубь зрительной коры. Глазодоминантные и ориентационные колонки могут быть также визуализованы при помощи биохимических и оптических методов, которые выявляют зоны активности коры у живого животного. Аксоны крупноклеточных (magnocellular. M) и мелкоклеточных (parvocellular, P) нейронов ядер латерального коленчатого тела проецируются в различные области 4 слоя первичной зрительной коры. В дальнейшем эта информация по М- или Р-трактам распространяется в различающиеся области первичной и вторичной зрительной коры. Нейроны М-пути отвечают за детекцию движущихся стимулов. Они также чувствительны к различиям в контрастности и интенсивности зрительных стимулов. Нейроны Р-пути ответственны за тонкие детали изображения и восприятие цвета. При восприятии изображения такие его элементы, как цвет и движение, анализируются независимо. Это иллюстрируется тем фактом, что повреждения в изолированных зонах мозга приводят к селективной потере одного из этих свойств, но не сказываются на общем восприятии изображения глазом. Повреждения в области париетальной коры, известной как МТ (или V5), приводят к полной потере способности определять движения объектов и к нарушениям в восприятии интенсивности изображения. При локализации повреждения в затылочно-височной области (зона V4) теряется способность к распознаванию цвета. Выдающимся достижением является использование неинвазивных методов функционального магнитного резонанса для определения зон активности мозга животных и человека. Хотя отдельные корковые глазодоминантные и ориентационные колонки имеют размеры меньше сегодняшнего предела разрешения данного метода, именно при помощи этого метода были найдены области зрительной коры, специализирующиеся на задачах особого рода, таких как определение движения и распознавание лиц. В главе 20 мы описали, как путем анализа эффекта зрительных стимулов на последовательно связанные кортикальные клетки можно понять процессы переработки информации в первичной зрительной коре. Этот подход приблизил нас к пониманию клеточных механизмов анализа формы в каждой отдельной точке поля зрения. Сейчас же нашей задачей является изучить, каким образом в коре кодируются другие аспекты восприятия, такие как цвет и движение, и каким образом эти свойства могут быть затем собраны воедино при восприятии цельного изображения. Мы уже описали поточечное представление сетчатки в области зрительной зоны (V1) и то, каким образом происходит разделение информации от обоих глаз в колонках глазного доминирования. В пределах данной ретинотопической карты существует функциональное деление; так, например, определенные колонки клеток реагируют на линии строго определенной ориентации. Мы начинаем эту главу исследованием взаимосвязи между колонками глазного доминирования и ориентационными колонками, затем мы рассмотрим доказательства того, что в зрительной коре движение и цвет анализируются параллельно различными группами клеток. И, наконец, мы рассмотрим примеры высшего уровня обработки зрительной информации в зонах, расположенных вне первичной зрительной коры. 466 Раздел III. Интегративные механизмы § 1. Колонки с доминированием одного глаза и ориентационные колонки В ранних экспериментах Хьюбеля и Визеля было показано, что клетки коры со сходными свойствами образуют между собой связи, формируя вертикально организованные колонки1· 2). В экспериментах с проникающим электродом, при его продвижении вглубь зрительной коры, у всех клеток обнаруживалась одна и та же ориентация оси рецептивного поля, то же глазное доминирование и одно и то же расположение рецептивного поля. Мы уже упоминали колонки предпочтения определенного глаза (eye preference). Как обсуждалось в главе 20, сигналы от обоих глаз разделяются в пределах слоя 4, где кортикальные нейроны получают сигналы только от одного глаза. В любой данной колонке, выходящей выше или ниже слоя 4, все кортикальные нейроны, даже те, которые получают информацию от обоих глаз, имеют одинаковое глазное предпочтение (либо левый, либо правый глаз). Таким образом, существуют колонки с предпочтительной, или по-другому, с доминирующей реакцией на сигналы от одного определенного глаза (глазодоминантные колонки). На рис. 21.1 иллюстрируются различия в таком глазном доминировании в нейронах стриарной коры обезьяны. Клетки (всего 1116) подразделяются на 7 групп. Группы 1 и 7 получают информацию только от одного из глаз и находятся в слое 4 коры. В группах 2, 3, 5 и 6 эффект одного из глаз сильнее, нежели другого, и только в средней группе 4 оба глаза имеют примерно одинаково выраженные эффекты. Из гистограммы также ясно, что большинство клеток отвечают преимущественно на сигналы от правого или левого глаза. Как было описано в главе 20, глазодоминантные колонки формируют своеобразный перемежающийся рисунок зрительной коры. Паттерны глазного предпочтения в коре могут быть непосредственно визуализованы, используя оптические сигналы от искусственно введенных красителей3)--5). При помощи этого метода можно исследовать активность больших участках коры во время предъявления животному различных зрительных стимулов. На рис. 21.2 показаны глазодоминантные колонки, выявленные в таком эксперименте. Полосатый (перемежающийся) рисунок активности напоминает тот, который может быть получен при введении радиоактивных меток в один глаз (см. рис. 20.8 в главе 20). При предъявлении зрительного стимула только одному глазу выявляются полоски клеток, получающих сигналы только от этого глаза, отделенные друг от друга клетками с невысоким уровнем активности. Проекции этих полосок от поверхно-
Глава 21. Функциональная архитектуре зрительной коры 467
сти коры вглубь образуют колонки глазного доминирования, делящие ретинотопическую карту на более мелкие области. Таким образом, информация о предмете, находящемся в одном и том же месте зрительного поля, идущая от обоих глаз, интегрируется в пределах зрительной коры как соседними клетками, так и соседними колонками (рис. 21.1В). оНХЯЙ ОН ЯЮИРС: |
бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ. яРСДЮКК.нПЦ (0.004 ЯЕЙ.) |