|
|||||||
юБРНюБРНЛЮРХГЮЖХЪюПУХРЕЙРСПЮюЯРПНМНЛХЪюСДХРаХНКНЦХЪаСУЦЮКРЕПХЪбНЕММНЕ ДЕКНцЕМЕРХЙЮцЕНЦПЮТХЪцЕНКНЦХЪцНЯСДЮПЯРБНдНЛдПСЦНЕфСПМЮКХЯРХЙЮ Х ялххГНАПЕРЮРЕКЭЯРБНхМНЯРПЮММШЕ ЪГШЙХхМТНПЛЮРХЙЮхЯЙСЯЯРБНхЯРНПХЪйНЛОЭЧРЕПШйСКХМЮПХЪйСКЭРСПЮкЕЙЯХЙНКНЦХЪкХРЕПЮРСПЮкНЦХЙЮлЮПЙЕРХМЦлЮРЕЛЮРХЙЮлЮЬХМНЯРПНЕМХЕлЕДХЖХМЮлЕМЕДФЛЕМРлЕРЮККШ Х яБЮПЙЮлЕУЮМХЙЮлСГШЙЮмЮЯЕКЕМХЕнАПЮГНБЮМХЕнУПЮМЮ АЕГНОЮЯМНЯРХ ФХГМХнУПЮМЮ рПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоПХАНПНЯРПНЕМХЕоПНЦПЮЛЛХПНБЮМХЕоПНХГБНДЯРБНоПНЛШЬКЕММНЯРЭоЯХУНКНЦХЪпЮДХНпЕЦХКХЪяБЪГЭяНЖХНКНЦХЪяОНПРяРЮМДЮПРХГЮЖХЪяРПНХРЕКЭЯРБНрЕУМНКНЦХХрНПЦНБКЪрСПХГЛтХГХЙЮтХГХНКНЦХЪтХКНЯНТХЪтХМЮМЯШуХЛХЪуНГЪИЯРБНжЕММННАПЮГНБЮМХЕвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛЕРПХЙЮщЙНМНЛХЙЮщКЕЙРПНМХЙЮчПХЯОСМДЕМЙЖХЪ |
регистрация работы клетокНеинвазивные методы регистрации изображений функционирующего мозга предоставляют удивительные возможности для изучения передачи информации как по зрительным путям, так и в целом в пределах головного мозга. Исследование на основе функционального магнитного резонанса способно обнаружить локальные изменения в кровообращении, которые сопровождают усиление нейронной активности92). Этот метод может быть использован для картирования первичной и ассоциативной зрительной коры у человека93)--96), которая имеет сходную организацию со строением зрительной коры обезьяны (рис. 21.14). Таким образом было показано, что у человека, при предъявлении цветовых стимулов, избирательно активируется зона вентральной затылочно-височной коры, которая, предполагается, соответствует зоне V4 коры обезьяны50· 97). Подобным же образом, движущимися стимулами у человека избирательно активируется зона МТ (V5)98· 99). Интригующим стало наблюдение, что зона МТ у пациентов, страдающих дислексией100), активируется движущимися стимулами гораздо слабее. Это дает основания полагать, что их неврологический дефицит может быть связан с дисфункцией крупноклеточного пути101). лица и буквы Из гипотезы иерархической организации коры следует, что должны быть обнаружены Глава 21. Функциональная архитектура зрительной коры 481
клетки, на которых конвергируют все большие и большие объемы информации об объектах, появляющихся в поле зрения. В самом деле, в зрительных областях более высокого порядка при помощи микроэлектродной регистрации были обнаружены нейроны, которые отвечают специфическим образом на лица102). При регистрации работы клеток было подтверждено, что определенный локус в области затылочно-височной коры (фузиформная извилина) активируется избирательно при просмотре изображений лиц, а не других объектов103). Как можно видеть на верхней «сканограмме» (фронтальный срез) на рис. 21.15, зона коры, отмеченная зеленым цветом, активировалась при просмотре изображений лиц, в то время как другие объекты, не являющиеся лицами (например, ложка), активировали билатеральные зоны, расположенные более каудально. Распознавание лиц может затрагивать и другие области, например центр языка. У правшей правая фузиформная извилина активировалась предпочтительно или исключительно при предъявлении изображений лии. У двух левшей, при аналогичном тесте, происходила активация этой извилины с левой стороны. Определенная локализация области распознавания изображений человеческих лиц также подтверждается клиническими данными, когда возникает нарушение только этой, и никакой другой функции обработки зрительной информации. Такое нарушение называется прозопагнозия (prosopagnosya)109· 110). В одном таком случае человек, имеющий высокие интеллектуальные способности и хорошую память, не был способен распознавать лица, причем даже лицо своей собственной жены111). Он рассказывал: «Как-то в клубе я увидел какого-то странного субъекта, который удивленно таращился на меня. Я спросил официанта, кто это? Вы будете смеяться. Это я смотрел на себя в зеркало». Потеря способности к распознаванию может распространяться и на другие категории, когда, например, человек, наблюдающий за птицами, утрачивает способность различать отдельные виды птиц, а делающий ставки на лошадей игрок во время забега не способен отличить одну лошадь от другой. Неврологические и невропатологические исследования показали, что прозопагнозия связана с повреждениями справа и, иногда, с двух сторон затылочно-височной коры112). Другие виды зрительных стимулов также способны вызывать определенные паттерны активности в затылочно-височной коре. Например, последовательности печатных букв (в виде строк) вызывают предпочтительную активацию в нижнезатылочной борозде левого полушария113). Соответственно, повреждения в области затылочно-теменной коры приводят к полной 482 Раздел III. Интегративные механизмы неспособности воспринимать печатный текст («чистая» алексия)114). Являются ли специализированные зоны зрительной коры врожденными, или они появляются с опытом? Хотя можно себе представить, что «нейроны для лиц» могут закладываться в онтогенезе, такое вряд ли возможно для печатного текста. Скорее всего, кора самоподстраивается под важные стимулы на протяжении всей жизни организма. В самом деле, зоны распознавания лиц в коре также активируются, когда эксперту по наблюдению за птицами показывают картинки птиц115). Формируются ли специфические регионы коры в результате долгой практики? Разрешение и воспроизводимость результатов в методах, позволяющих регистрировать активность клеток, дает нам основания полагать, что уже скоро мы сможем сами непосредственно наблюдать подобного рода изменения, подобно тому, как мы наблюдаем их в двигательной коре во время тренировок (глава 22). Развитие и пластичность неокортекса обсуждается далее, в главе 25. выводы ∙ Нейроны первичной зрительной коры организованы на основе предпочтения сигналов от одного определенного глаза (глазное доминирование) и ориентационной избирательности. ∙ Расположение колонок глазного доминирования и ориентационных «волчков» может быть обнаружено при помощи регистрации активности нервных клеток оптическими методами с поверхности мозга. Изоориентационные контуры стремятся пересекать зоны глазного доминирования под определенными углами, и каждая зона ориентирования располагается между двумя колонками глазного доминирования. ∙ Крупноклеточные, мелкоклеточные и кониоклеточные пути образуют параллельные каналы, несущие информацию от сетчатки в зрительную кору. Крупноклеточные нейроны чувствительны к движению и контрасту. Мелкоклеточные нейроны сигнализируют о пространственных деталях изображения и его цвете. Кониоклеточные нейроны переносят цветовую информацию непосредственно к участкам коры, выявляемым как «пятна» активности цитохромоксидазы. ∙ «Пятна» цитохромоксидазы располагаются в центре каждой глазодоминантной колонки и представляют собой области синтеза сигналов в первичной зрительной коре (V1). ∙ Чередующиеся полоски коры с высокой и низкой активностью цитохромоксидазы в области V2 особым образом взаимосвязаны с подобными же полосками в области V1. ∙ Распознавание движения обеспечивается нейронами V5 (зона МТ) париетальной коры. ∙ Зона V4 в височно-затылочной области содержит в основном нейроны, кодирующие цветовую информацию. ∙ Клетки двойного противопоставления (double-opponent cells) в зрительной коре имеют свойства, играющие важную роль в восприятии феномена постоянства цвета. ∙ Интеграция рецептивных полей в коре обеспечивается длинными горизонтальными аксонами, которые соединяют между собой колонки клеток, имеющих близкие свойства. ∙ Большинство нейронов коры получает сигналы от соответствующих точек зрительного поля обоих глаз, но некоторые нейроны отвечают на стимулы, расположенные в различных точках двух сетчаток. При помощи подобных отличий в восприятии изображения двумя глазами в области МТ происходит стереоскопическое восприятие глубины изображения. ∙ Функциональные магнитно-резонансные исследования позволяют провести картирование зон активности в пределах первичной и вторичной зрительной коры, а также в более высокоспециализированных областях коры человека. Глава 21. Функциональная архитектура зрительной коры 483 оНХЯЙ ОН ЯЮИРС: |
бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ. яРСДЮКК.нПЦ (0.004 ЯЕЙ.) |