юБРНюБРНЛЮРХГЮЖХЪюПУХРЕЙРСПЮюЯРПНМНЛХЪюСДХРаХНКНЦХЪаСУЦЮКРЕПХЪбНЕММНЕ ДЕКНцЕМЕРХЙЮцЕНЦПЮТХЪцЕНКНЦХЪцНЯСДЮПЯРБНдНЛдПСЦНЕфСПМЮКХЯРХЙЮ Х ялххГНАПЕРЮРЕКЭЯРБНхМНЯРПЮММШЕ ЪГШЙХхМТНПЛЮРХЙЮхЯЙСЯЯРБНхЯРНПХЪйНЛОЭЧРЕПШйСКХМЮПХЪйСКЭРСПЮкЕЙЯХЙНКНЦХЪкХРЕПЮРСПЮкНЦХЙЮлЮПЙЕРХМЦлЮРЕЛЮРХЙЮлЮЬХМНЯРПНЕМХЕлЕДХЖХМЮлЕМЕДФЛЕМРлЕРЮККШ Х яБЮПЙЮлЕУЮМХЙЮлСГШЙЮмЮЯЕКЕМХЕнАПЮГНБЮМХЕнУПЮМЮ АЕГНОЮЯМНЯРХ ФХГМХнУПЮМЮ рПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоПХАНПНЯРПНЕМХЕоПНЦПЮЛЛХПНБЮМХЕоПНХГБНДЯРБНоПНЛШЬКЕММНЯРЭоЯХУНКНЦХЪпЮДХНпЕЦХКХЪяБЪГЭяНЖХНКНЦХЪяОНПРяРЮМДЮПРХГЮЖХЪяРПНХРЕКЭЯРБНрЕУМНКНЦХХрНПЦНБКЪрСПХГЛтХГХЙЮтХГХНКНЦХЪтХКНЯНТХЪтХМЮМЯШуХЛХЪуНГЪИЯРБНжЕММННАПЮГНБЮМХЕвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛЕРПХЙЮщЙНМНЛХЙЮщКЕЙРПНМХЙЮчПХЯОСМДЕМЙЖХЪ

рецепторы растяжения речного рака

вХРЮИРЕ РЮЙФЕ:
  1. глутаматные рецепторы в ЦНС
  2. кодирование параметров стимула рецепторами растяжения
  3. короткие и длинные рецепторы
  4. молекулярные рецепторы для глутамата и чили
  5. рецепторы к нейротрофинам
  6. рецепторы, которые опосредуют прямую и непрямую химическую передачу

Кодирование стимула было детально проанализировано на примере рецепторов растяжения рака Эйзагиром и Куффлером 10). Этот препарат особенно удобен тем, что клеточное тело рецептора растяжения находится не в ганглии, а расположено изолированно на периферии, где его можно видеть в живом препарате (рис. 17.3А). Клетка достаточно велика для введения внутриклеточных микроэлектродов. Она проникает своими дендритами в ближайший тонкий мышечный тяж, а свой аксон посылает центрипетально в сегментарный ганглий (рис. 17.3В). В дополнение к этим связям, рецепторный нейрон получает тормозную иннервацию из ганглия; мышечное волокно, связанное с рецептором, в свою очередь, получает возбуждающую и тормозную эфферентную иннервацию. Таким образом, чувствительность рецептора регулируется ЦНС.

У ракообразных существует два типа рецепторов растяжения, различающихся своими структурными и физиологическими свойствами, а также тем, что они своими дендритами иннервируют различные типы мышц. Одни из них бурно активируются в начале растяжения, но затем их реакция быстро ослабевает. Такое снижение ответной реакции в процессе действия стимула постоянной интенсивности называется адаптацией. В противоположность быстро адаптирующемуся рецептору, второй тип называется медленно адаптирующимся; это означает, что его реакция сохраняется неизменной во время продолжительного растяжения. Реакции быстро адаптирующихся и медленно адаптирующихся рецепторов растяжения показаны на рис. 17.4. У медленно адаптирующихся рецепторов (рис. 17.4А) умеренное растяжение мышцы вызывает деполяризационный рецепторный потенциал амплитудой около 5 мВ, сохраняющийся неизменным во время растяжения. Более сильное растяжение приводит к увеличению потенциала, в результате чего


366                                               Раздел III. Интегративные механизмы

Рис. 17.4. Ответы нейронов рецептора растяжения на увеличение длины мышцы при внутриклеточном отведении, аналогичном рис. 17.3В. (А) В медленно адаптирующемся рецепторе слабое растяжение в течение 2 секунд вызывает подпороговый рецепторный потенциал. При усилении растяжения возникает серия потенциалов действия. (В) В быстро адаптирующемся рецепторе рецепторный потенциал снижается, а при более сильном растяжении снижается частота потенциалов действия. Fig. 17.4. Responses of Stretch Receptor Neurons to increases in muscle length, recorded intracellularly as indicated in Figure 17.3B. (A) In a slowly adapting receptor, a weak stretch for about 2 s produces a subthreshold receptor potential that persists through- out the stretch (upper record). With a stronger stretch, a larger receptor potential sets up a series of action potentials (lower record). (B) In a rapidly adapting receptor, the receptor potential is not maintained (upper record), and during the large stretch the action potential frequency declines (lower record). (After Eyzaguirre and Kuffler, 1955.)

клетка деполяризуется до порогового уровня, и в ней возникает серия потенциалов действия, которые распространяются центрипетально по аксону. В быстро адаптирующемся рецепторе подобное растяжение мышцы вызывает только кратковременные ответы (рис. 17.4В).

мышечные веретена

Рецепторы растяжения в скелетных мышцах у млекопитающих демонстрируют те же механизмы действия, что и у ракообразных. Такие рецепторы растяжения в свое время были названы анатомами мышечными веретенами, поскольку они по форме напоминают веретена, используемые ткачами. Особенности того, как реагируют мышечные веретена, были исследованы Мэтьюзом в начале 1930-х годов11)--13). На протяжении многих лет его опыты оставались одним из лучших примеров всестороннего описания периферического органа чувств и механизмов управления его работой. Мэтьюзу удалось записать импульсы в одиночных нервных волокнах от отдельных веретен лягушек и кошек с помощью осциллоскопа, который он сконструировал для этой цели (в 1930 году это было настоящим подвигом).

Мышечные волокна в составе веретена (интрафузальные волокна) отличаются от основной мышечной массы (экстрафузальных волокон) во многих отношениях (см. обзор Ханта14)), включая молекулярную структуру содержащегося в них миозина15). Они названы интрафузальными волокнами, от лат. fusus — веретено. Рис. 17.5 схематически иллюстрирует сенсорный аппарат веретен в мышцах конечности кошки. Веретено состоит из капсулы, содержащей от 8 до 10 интрафузальных волокон. В центральной, или экваториальной, области каждого волокна находится большое скопление ядер. Их расположение дает основание для классификации интрафузальных волокон, которые подразделяют на сумчатые и цепочечные волокна (bag or chain fibers), в зависимости от того, сгруппированы ли ядра в центре или распределены линейно вдоль волокна.

Два типа сенсорных нейронов иннервируют каждое мышечное веретено. Более крупные нервные волокна, афференты группы la, имеют диаметр от 12 до 20 мкм и проводят импульсы со скоростью до 120 м/с. (Классификация волокон, которая используется здесь и является общепринятой, приведена в главе 7.) Их терминали обвиваются вокруг центральной части как сумчатых, так и цепочечных волокон, и формируют первичные окончания. Более мелкие сенсорные нервы (волокна группы II) имеют диаметр от 4 до 12 мкм и проводят импульсы гораздо медленнее. Они контактируют с цепочечными волокнами, где образуют вторичные окончания.


Глава 17. Трансдукция механических и химических стимулов 367

Рис. 17.5. Мышечное веретено млекопитающего. (А) Схема иннервации веретена. (В) Упрощенная диаграмма типов интрафузальных мышц и их иннервации. Fig. 17.5.Mammalian Muscle Spindle. (A) Scheme of mammalian muscle spindle innervation. The spindle, composed of small intrafusal fibers, is embedded in the bulk of the muscle, which is made up of large muscle fibers supplied by a motoneurons. 7 Motor (fusimotor) fibers supply the intrafusal muscle fibers, and group I and group II afferent fibers carry sensory signals from the muscle spindle to the spinal cord. (B) Simplified diagram of intrafusal muscle types and their innervation. (В after Matthews, 1964.)

Мышечное веретено иннервируется, кроме того, мотонейронами (фузимоторные волокна, или g-мотонейроны). Они обеспечивают сокращение интрафузальных волокон и растягивают за счет этого центральную ядерную область, где расположены сенсорные окончания, вызывая в них разряд импульсов. Это взаимодействие обеспечивает механизм эфферентного контроля чувствительности мышечного веретена, который будет описан в главе 22.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 |

оНХЯЙ ОН ЯЮИРС:



бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ. яРСДЮКК.нПЦ (0.005 ЯЕЙ.)